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Nomenclature

c Airfoil chord length
Cs Drag coefficient ( D/gc)
C, Lift coefficient ( L/gc)
C, Static pressure coefficient (—p i )
q

c, Steady momentum coefficient (J/gc )
<C ”> Oscillatory momentum coefficient ((J)/gc)
D Drag

dcC
—_L Pressure recovery coefficient
d(x/c)
f. Filter cutoff frequency
A Excitation frequency
i Modulation frequency
Seep Shedding frequency of separated flow (U_/X,, )
; Wake shedding frequency (U_/W,_,. )
F* Reduced excitation frequency ( fX,, /U )
h Slot width
J Steady jet momentum ( pU fh)
(J ) Oscillatory jet momentum ( pufh )
L Lift
p Static local pressure
p.. Free stream pressure
q Free stream dynamic pressure ( pU’ / 2)
u; Oscillatory jet velocity
U, Mean jet velocity
U, Free stream velocity
. S Distance from separation points to trailing edge
> . Distance from excitation slot to trailing edge
P Air density
6 Boundary layer momentum thickness
o’ Variance of signal

Variance of noise



AM
AOA
BM
DAQ
DSP
ID
LDV
MSE
PIV
PM
PSD
SIA
SNR (dB)

Abbreviations

Amplitude Modulation
Angle Of Attack

Burst Modulation

Data AcQuisition

Digital Signal Processing
IDentification

Laser Doppler Velocimetry
Mean Square Error

Particle Image Velocimetry
Pulse Modulation

Power Spectral Density
Synthetic Jet Actuator
Signal to Noise Ratio



Abstract

Flow separation has severe adverse effects on performance of flow-related devices (e.g.,
lift loss of aircrafts). Active control of separated flow has received extensive attention as it is
able to mitigate or eliminate flow separation effectively. Most research has been open-loop in
nature (i.e., manually adjusting control inputs to achieve best results). Closed-loop control of
separated flow has many potential advantages over open-loop control, namely optimization in
multi-dimensional domain with constraints, adaptability to changing flow conditions, etc. In this
research, adaptive closed-loop control is used to reattach the separated flow over a NACA 0025
airfoil using multiple zero-net-mass-flux (ZNMF) actuators that cover the central 33% of the
airfoil span. In particular, two distinct approaches are used. Adaptive disturbance rejection
algorithms are used to apply dynamic feedback control of separated flow. The closed-loop
control results show ~ 7 x improvements in the lift/drag ratio, with a corresponding increase in
lift and reduced drag and concomitant reductions in the fluctuating surface pressure spectra. On
the other hand, a simplex optimization approach uses the lift and drag measured by a strain-
gauge balance for feedback and searches for the optimal actuation parameters in a closed-loop
fashion. The constrained optimization results seeking to maximize lift-to-drag ratio are
promising and reveal the importance of forcing nonlinear interactions between the shear layer
and wake instabilities.



1 Introduction

The primary goal of this research is to implement a closed-loop control system to control
separated flow and to evaluate the performance of the controller. A control system that includes
an array of actuators, sensors (pressure sensors or lift/drag balance) and a digital controller is
proposed to control flow separation in a closed-loop fashion.

This first chapter introduces the flow physics and active control approaches of flow
separation. It is organized as follows. First, a brief overview of separation control is provided to
orient the reader, followed by the motivation. Then a technical background section is presented
to review previous work reported in the literature. Finally, the objectives and technical
approaches of this research are presented.

1.1 Overview

Flow separation is identified as one of the most important flow phenomena due to its
severe adverse effects on flow-related devices. Following the introduction of the concept of the
boundary layer by Prandtl (1904), flow separation has received considerable attention in the fluid
dynamics community.

Flow separation is the breakaway or detachment of fluid from a solid surface (Greenblatt
and Wygnanski 2000). Flow separation incurs a large amount of energy/lift loss and limits the
performance of many flow-related devices (e.g., airplanes, diffusers, etc.). Researchers have
been trying to eliminate or at least mitigate flow separation for over a century because of its large
potential payoff in many applications.

As shown in Figure 1-4, control of separated flow is divided into two main categories:
active control and passive control. Active control provides external energy into the flow while
passive control does not. Some passive separation control methods, such as geometrical shaping
and turbulators (i.e., turbulence generators), are commonly used because of their simplicity and
feasibility. On the other hand, tremendous progress has been made in active separation control
over the past twenty years. Traditional active separation control methods, such as steady
blowing and suction, were initially used to control flow separation (Gad-el-Hak 2000). These
methods were able to control of separation to some extent. However, they were far from
optimal because the overall energy required input required to gain a meaningful lift increase or
drag reduction was comparable to the energy saved via control of separation (Greenblatt and
Wygnanski 2000).

Schubauer and Skramstad (1948) first introduced a breakthrough in active flow control:
periodic excitation. This technique requires much less energy than traditional steady active
methods and accelerates and regulates the generation of large coherent structures that are
primarily responsible for the transport of momentum across the flow (Greenblatt and Wygnanski
2000). The increased large coherent structures make the flow more resistant to separation.
Periodic excitation has subsequently been shown to be superior to steady boundary layer control
methods by many researchers (Seifert 1996; Greenblatt and Wygnanski 2000; Nishri and
Wygnanski 1998). Because of these reasons, periodic excitation is now widely used to control
flow separation. Optimal excitation locations, waveforms shapes, and frequencies of periodic
perturbations have been systematically studied by numerous researchers (Seifert and Pack
2003A, Amitay et al. 2001). Yet none of these studies has used feedback control to “optimize”
the excitation waveform.



One of the most important aspects of separation control is the actuation mechanism that
introduces periodic perturbations into the flow structure. Internal acoustic excitation (Hsiao et
al. 1990; Huang et al. 1987), speakers (Narayanan and Banaszuk 2003), oscillatory blowing
valves (Allen et al. 2000), and MEMS-based actuators (Rathnasingham and Breuer 2003), etc.
have been investigated. Among these, synthetic jet or zero-net mass flux (ZNMF) actuators have
been the focus of significant research for the past decade due to their utility in flow control
applications (Glezer and Amitay 2002). ZNMF actuators utilize the working fluid and do not
require an external fluid source, which makes them very attractive from a systems
implementation perspective. Significant progress has been made in the modeling and design of
such devices (Gallas et al. 2003, 2005). More details of the synthetic jet actuators used in this
research are described in Chapter 4. The driving frequency, location, and momentum coefficient
of the actuation are the primary parameters that characterize their performance (Amitay et al.
2001).

Although separation control has received extensive attention, to date most studies have
focused on open-loop separation control. In the author’s opinion, this open-loop approach is due
to a fluid mechanics bias to avoid using a more complex closed-loop control approach. Closed-
loop separation control has the potential to save more energy than open-loop methods (Cattafesta
et al. 1997) and make separation control systems adaptable to different flow conditions. Few
experimental studies have focused on closed-loop separation control. For example, Allan et al.
(2000) attempted to tune a PID controller for closed-loop separation control and showed that the
integral gain was the most effective as a result of the large time constant of their low bandwidth
actuator system. However, the realized model and controller were simple. Their results merely
scratched the surface of what can possibly be accomplished. Therefore, it is believed that control
of flow separation using an array of high bandwidth actuators and surface sensors (pressure or
shear stress) is an excellent candidate for closed-loop separation control. Hence, implementation
of feedback controllers including more advanced modeling and control algorithms to flow
separation control is proposed and is the focus of this research.

1.2 Motivation

Numerous applications of separation control, each with significant potential payoffs, have
been identified (Greenblatt and Wygnanski 2000). Many separation control strategies have been
applied on civil and military aircrafts and underwater vehicles. However, most of the
applications are open-loop in nature because of their simplicity. Although some closed-loop
separation control research has been done (Allan et al. 2000; Banaszuk et al. 2003, etc), they are
not sufficiently developed to be implemented on real vehicles. The goal of this research is to
design and implement various closed-loop control systems for control of separated flows and to
seek physical insights behind the control schemes. The main advantages of closed-loop
separation control potentially include better performance, energy efficiency and adaptability to
changing of flow conditions.

1.3 Background
1.3.1 Two-Dimensional Separation Flow Physics
Under the circumstances of an adverse pressure gradient (dp/dx >0), fluid particles are

retarded by both the increasing pressure as well as wall skin friction. If the adverse pressure
gradient is of sufficient strength, fluid particles near the wall are likely to separate from the wall
and move upstream. This is due to the fact that these particles have finite kinetic energy and
cannot penetrate far into the adverse pressure gradient region. The flow separates from the
boundary layer and forms large scale vortical structures in the separated region (Figure 1-1).



Assuming two-dimensional, incompressible, steady flow with negligible gravity, the
streamwise (““x’) component of the momentum equation at the wall reduces to

u/BZ+v8 =—id—p+v 9, +22—li (1)
ox ady p dx X’ 9y’

du ldp
Pt e il 0 z
V8y2 oy (2)

where v=p/p is the kinematic viscosity, y is the wall normal coordinate, x is the streamwise

or

coordinate with a corresponding u velocity and streamwise pressure gradient dp/dx .

From eqn. (2), we can see that only an adverse pressure gradient (dp/dx >0) can cause a
point of inflection in the velocity profile and the curvature changing sign to make the profile S-
shape. In this case, separation will occur when the adverse pressure gradient is strong enough to
make the right hand side of eqn. (2) positive (shown in Figure 1-1).

1.3.2 Effects of Flow Separation

In the separation region, the normal velocity component significantly increases as well as
the thickness of boundary layer. Therefore, the boundary layer approximations are no longer
valid and the problem can no longer be solved using boundary layer theory.

Flow separation significantly changes the pressure distribution around the surface. Such
deviations are usually detrimental. As an example, Figure 1-3 shows the C, and C, of a

NACAO0025 airfoil versus angle of attack measured by a lift/drag balance at Re =100,000.
When the angle of attack increases from zero degree, both C; and C, increase as expected.
However, C, drops dramatically due to flow separation at about 13 degrees of angle of attack.
At the same time, C, continues to increase beyond the inception of stall. Both of these effects

generally have a negative impact on the airplane performance. However, some applications
utilize flow separation. For example, the use of spoilers on airplanes during landing reduces the
lift and increases drag to allow the brakes to work more efficiently.

More commonly, we want to mitigate or eliminate flow separation. Typical applications

of flow separation control include: separation control of various airfoils to increase C for

Lmax
larger payload (Greenblatt and Wygnanski 2000; Seifert and Pack 2002; etc); to reduce engine
power and noise at takeoff (Gad-el-Hak 2000); to increase efficiency of diffusers (i.e. pressure
recovery) (Banaszuk et al. 2003); etc.

1.3.3 Control of Flow Separation

Because of the effects mentioned above and the large potential payoff, researchers have
been preoccupied with delaying flow separation or eliminating it entirely. As suggested by
Cattafesta et al. (2003), the classification of flow control is chosen as shown in Figure 1-4 to be
consistent with terminology used in active noise and vibration control.  Active control is
subdivided into open-loop versus closed-loop control. Closed-loop control can be further
classified into quasi-static versus dynamic, the distinction between the two being whether or not
the feedback control is performed on a time scale with the dynamical scales of the flow. Since
fluid flows are inherently nonlinear (Wu et al. 1998), the standard frequency preservation of a
linear system does not hold. Consequently, nonlinear feedback control on a very slow time
compared to the characteristic times scales of the flow is, in fact, possible and attractive. In



essence, this so-called quasi-static control becomes a nonlinear optimization problem. This
research will investigate both classes of closed-loop control shown in Figure 1-4.

Other fluid dynamic issues have been studied extensively, such as the effects of Reynolds
number, frequency, actuator and sensor locations, momentum coefficient, surface curvature, and
compressibility, etc.. Although the topic of this research is closed-loop separation control, the
results and conclusions from the open-loop control studies should serve as a sound physical basis
for effective control and are reviewed below.

1.3.3.1 Open-loop separation control.

Periodic excitation has been shown to be much more effective than steady forcing
because it enhances the momentum transport across the flow domain at a substantial reduction in
energy expenditure. It accelerates and regulates the generation of large coherent structures that
are primarily responsible for the momentum transport across the flow (Greenblatt and
Wygnanski 2000). The enhanced momentum transport forces the separated flow to reattach to
the surface and form a thick turbulent boundary layer in a time-averaged sense. The
reattachment of the boundary layer regains the pressure suction zone on the upper surface of the
airfoil and thus enhances the lift performance. Furthermore, the superposition of weak suction
on the periodic excitation enhances the receptivity of the separated shear layer to the
fundamental excitation frequency and thus the effectiveness of periodic excitation (Seifert and
Pack 2002).

Given the improved performance of periodic excitation to control flow separation,
researchers have sought to optimize separation control via time-consuming parametric variations.
Significant parameters or conditions that affect the performance of separation control have been
identified. Although they are discussed separately below, one should keep in mind that these
factors are all coupled with each other.

Actuation frequency. First, consider the characteristic flow structures associated with
separated flow. Based on previous studies, Mittal et al. (2005) summarize the three situations
with regards to separated flow, as shown in Figure 1-5. In post-stall flow (case C in Figure 1-5),
leading-edge shear layer rollup and vortex shedding in the wake are two characteristic features
(Wu et al. 1998). Huerre and Monkewitz (1990) suggest that this type of shear flow (with a
pocket of absolute instability of sufficient size) may display intrinsic dynamics of the same
nature as in a closed-flow system, in which disturbances can grow upstream (i.e. global
instability). Therefore, it is reasonable to postulate that separated flow over an airfoil acts as a
nonlinear multi-frequency closed-flow system. In such a system, the shear layer instability (with
characteristic frequency f, ) and the global wake instability (with vortex shedding frequency

f .. ) may interact with each other in a nonlinear fashion. In case B, a closed separation bubble

is present at some distance downstream of the leading edge. In this case there are potentially
three characteristic flow frequencies in the separated flow: fg , f_,. and f_, where the new

wake sep ?

scale, f___, corresponds to the characteristic frequency of the separation bubble.

and f, ~U/W
where 6, is the shear layer thickness, L, is the length of the separation bubble and W, is

the width of wake. Prasad and Williamson (1996) also show that fy =ARe®f,, , where

A=0.0235 and B=0.67. Since there are different relevant length scales that are included in
the three characteristic frequencies, one should expect a significant variation in the observed
frequency scales and the corresponding optimal frequency.

sep ?

The scales of the three frequencies are fg ~U/f , fg ~U/L

sep wake ?
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The present study is focused on how flow systems respond to modulated (e.g. AM, BM,
PM) unsteady excitations by ZNMF devices targeting the inherent flow instabilities that lead to
the presence of these characteristic flow frequencies. The goal is to search for optimal forcing
schemes that most effectively mitigate flow separation via nonlinear interaction of the
instabilities.

Much research has been conducted to determine what excitation frequencies are most
effective for separation control. However, except for the general agreement that periodic
excitation is far more effective than steady blowing, the range of optimal actuation frequencies is
a current subject of intense debate. A dimensionless actuation frequency is typically defined for
this purpose. However, three slightly different definitions have been given for a so-called

dimensionless frequency F': 1) F'=f X, /U_, where f_ is the excitation frequency, X, is
the distance from the excitation slot to the trailing edge and U_ is the free stream velocity; 2)
F'=fL,, / U, , where L, is the distance from separation to reattachment; and 3) F'=fc/U_,

where c is the chord length. These three are nearly identical for post-stall flow (where the
separation bubble length is approximately the airfoil chord), but they scale very differently if a
closed separation bubble of finite extent is present. One should notice that none of these

definitions is related to the shear layer frequency (f, ). Most researchers implicitly ignore this
important frequency when studying separation control.

Herein, some results regarding actuation frequency in previous studies are summarized.
Among studies that define F'=f X,./U_, Wygnanski and his colleagues conclude that the

optimal excitation frequency is of order unity F'=0(1) (Seifert et al. 1996, Nishri and
Wygnanski 1998, Greenblatt and Wygnanski 2000) and have found that so-called high frequency
fording F*=0(10) is ineffective for their airfoil (NACA 0015) and flow conditions. Conversely,
using the same definition of F', Amitay et al. (2001) found that when the excitation frequency
F* > 0(10), the lift-to-pressure drag ratio was larger than that when the excitation frequency
F' <4. Honohan et al (2000) also suggested that higher reduced frequencies (F* >10) can be
effective. They argued that it is because the high frequency excitation produces a virtual
aerodynamic surface modification that thins the turbulent boundary layer and results in a local

favorable pressure gradient.
Besides this argument, there may be two other possible reasons accounting for this

interesting discrepancy. First, the length-scale X,. may not be appropriate for their airfoil
because of the formation of a closed separation bubble. Instead, if L. were used, this
discrepancy might not exist. Second, as mentioned earlier, the shear layer frequency f; may
also be important (Mittal et al 2005). Here, fy o U/6, where 6 is the boundary layer
momentum thickness and not X, or L, . The different frequency scales are indicative of

different flow instabilities that may exist in the flow and, if present, may compete with each
other (Wu et al 1998). When periodic excitation is introduced, one or more of these instabilities
may be energized. The controlled flow may then be regulated, and thus lift performance may be
enhanced. This may explain the observed variations of the optimal excitation frequency.

Along these lines, an innovative forcing approach that uses multiple harmonically related
frequencies is presented by Narayanan and Banaszuk (2003). They demonstrated improvements
of this new approach versus single frequency sinusoidal forcing in control of separation in a

11



diffuser, although its effectiveness requires further investigation. To extend this idea further, one
can use excitations with multiple frequency components corresponding to the characteristic
frequencies mentioned above. This idea will be investigated in this research.

Excitation amplitude. Another key control parameter in a ZMNF device is jet velocity
V, (some characteristic velocity measure, e.g. the peak or an average velocity). In the literature,

the jet frequency is usually non-dimensionalized as F":fLscp/Um, where L, is, for example, the
length of separation region and U_ is the free stream velocity. The jet velocity is usually non-
dimensionalized by U_. Various researchers have shown that control authority varies

monotonically with V /U_ for a sinusoidal excitation up to some maximum value (Seifert et al.

1993, 1996, 1999; Glezer and Amitay 2002; Mittal and Rampunggoon 2002). In practice,
especially in high speed flows, control authority is often lacking. From an efficiency standpoint,
it is desirable to control a flow with minimal actuator input.

Modulation signals. Piezoelectric actuators have fast dynamic response and low power
consumption. However, the use of piezoelectric actuators has been limited because of the
diminution in their response outside a narrow frequency band around their resonance frequency
and the need for testing over a wide frequency range due to the issues discussed in the last
section.

Wiltse and Glezer (1993) introduced a clever amplitude modulation method to flow
control problems to overcome this problem. The piezoelectric actuator is resonantly driven with
a carrier waveform, e(t), which is amplitude modulated with a time-harmonic wave train:

e(t)=[1+esin(w, t+¢ )]A sin(o_t) 3)
where A, is the amplitude of the carrier signal, € is the degree of modulation (0<e<1), w_ is
the carrier frequency (or the resonant frequency of the actuator) in rad/s, o is the modulation
frequency (which is also the desired excitation frequency or receptive frequency of the flow) in
rad/s, and ¢, is the phase of the modulating signal. By using trigonometric identities, one can

show that e(t) contains frequency components at ®, and ®_*o,_, However, when the

excitation amplitude is high enough, e(t) is demodulated by the nonlinear fluid dynamical

system that is associated with the formation and coalescence of nominally spanwise vortices.
This nonlinearity results in the presence of o, and ®_*o_ and also o  in the flow. In practice,

o, is set at the resonance frequency of the piezoelectric actuator (which is usually > ) and
o, is set at the desired low frequency corresponding to the desired excitation frequency f,.

Along these lines, other modulation signals such as burst modulation and pulse
modulation can also be used. This modulation technique allows the actuator operating at its
resonant frequency to generate a significant flow disturbance while effectively manipulating
flows at characteristic frequencies of the flow. It provides a much more flexible approach than
matching the resonant frequency of the actuator with the receptive frequencies of the flow.

However, some features of the technique should also be kept in mind. First, the actuator
is driven continuously near its resonant frequency, so the probability of mechanical failure is
greater than when it is driven off resonance. Second, as mentioned above, demodulation of the
waveform is due to nonlinearities of the flow and actuator. As a result, feedback controllers

12



designed based on a linear assumption may not work as desired. This aspect will be studies in
this research.

Actuation location. It is argued by many researchers that the optimal actuation location
is at the vicinity of the point of separation (Amitay et al. 2001, Seifert et al. 1996, Seifert and
Pack 2003). This is physically plausible since the disturbances introduced at this location can
most effectively transport momentum between the free shear layer and the separated region.
However, this has not been systematically studied because of some practical limitations, namely
the difficulty of installing multiple actuators inside an airfoil. Amitay et al. (2001) used an
unconventional airfoil that had an aft portion of a symmetric airfoil attached to a circular
cylinder forebody with a synthetic jet slot that could be adjusted by rotating the cylinder. They
state that the closer the control is located to the observed separation point, the less power is
required to reattach the flow. They also made an interesting point that if either the separation
location is unknown or practical limitations preclude control near the separation location, the
momentum coefficient C, may be manipulated to achieve optimal performance.

Besides the effects of actuation location discussed above, the interaction of adjacent
synthetic jet actuators has been investigated by Holman et al. (2003). They found that relative
phasing between adjacent actuators does not appear to affect the effectiveness of separation

control significantly for their airfoil (NACA 0025) and flow conditions (Rt,=105 and

AOA =12°).

In summary, based on the previous studies it is suggested that slightly upstream of the
separation location is the “best” place to introduce actuation. Furthermore, a combination of
upstream leading edge and downstream trailing edge actuations may also be a good candidate
and remains to be investigated (Mittal et al 2005). Wu et al (1998) discuss this idea in the
context of the Kutta-Joukowski lift formula (L=-pUI’), which assumes the flow is

incompressible and steady. In the formula, L is the lift, U is free stream velocity and I is the
circulation (a counterclockwise circulation is assumed positive). Although the separation is an
unsteady process, this formula still holds in a time-averaged sense for the entire flow. Based on
these arguments, if the combination of leading edge and trailing edge actuation can be designed
to alter the circulation of the airfoil, it should be able to control flow separation in some manner.

Effects of Reynolds number and compressibility. It is shown that control of flow
separation is insensitive to the Reynolds number at high chord Reynolds numbers of 11~30
million (Seifert and Pack 2003 A, B, Greenblatt and Wygnanski 2000). The Reynolds number
has a very weak effect on pressure distributions around the surface, regardless of the Mach
number.

On the other hand, strong Reynolds number effects are identified in the airfoil baseline
performance at moderately compressible flow conditions (Seifert and Pack 2001). Reynolds
number effects weaken as the Mach number increases and a stronger shock wave develops.
Compressibility tends to elongate the separation bubble and reduce the capability of periodic
excitation to shorten the separation bubble with similar excitation frequencies and momentum
(Seifert and Pack 2001).

It is also suggested by Seifert and Pack (2001) that in the presence of shock waves the
excitation location should be slightly upstream of the shock wave. If the excitation is introduced
well upstream of the shock wave, it has a detrimental effect on lift, drag and wake steadiness.
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1.3.3.2 Closed-loop separation control

Closed-loop experimental separation control has not yet received significant attention.
This section first reviews some development of the micro-electro-mechanical systems (MEMS)
based actuators because of their potential importance to high bandwidth closed-loop control
systems. Then the limited previous work on closed-loop separation control is presented.

For closed-loop flow control systems, the desired actuators should be fast, power
efficient, and reliable. In previous separation control studies, acoustic excitation (Hsiao et al.
1990 and Huang et al. 1987) seems facility dependent because the acoustic drivers stimulate the
wind tunnel resonant modes to excite the separated flow; oscillatory blowing valves (Allen et al.
2000) appear to have slow dynamic response; active flexible wall transducers (Sinha 2001) have
complicated structures despite its high actuation efficiency and ability to actuate and sense with
the same hardware. These drawbacks have limited the use of these actuators.

On the other hand, synthetic jet (ZNMF) actuators have been the focus of significant
research activities for the past decade due to their utility in flow control applications (Glezer and
Amitay 2002). They utilize the working fluid and do not need external fluid injection. They can
force the momentum transfer across the flow without net mass flux (thus the name ‘“‘synthetic™).
The design of synthetic jets is also flexible and the working frequency range can be tuned
according to different flow control applications. In addition, the recent paper by Gallas et al.
(2003) presents a lumped element model of a piezoelectric-driven synthetic jet actuator. They
provide a novel method to design and model synthetic jets, which makes them very suitable for
closed-loop separation control. In lumped element modeling (LEM), the individual components
of a synthetic jet are modeled as elements of an equivalent electrical circuit using conjugate
power variables (i.e., power = generalized flow x generalized effort). The frequency response
function of the circuit is derived to obtain an expression for Q_,/V,., the volume flow rate per

applied voltage. The comparison between the LEM and experimental frequency response is
shown in Figure 1-6.

For a variety of reasons, closed-loop control in a real-time experiment has been
traditionally difficult to achieve. In reduced-scale laboratory experiments, the characteristic
frequencies of separated turbulent flows are proportionally higher than those on full-scale
models, which requires high frequency sensing and actuating capabilities. Furthermore, real-
time experiments require the digital control system to sample at a minimum of twice of the
highest frequency of interest. The availability of hardware (including actuators, sensors and real-
time control systems) therefore imposes significant limitations on the complexity of the closed-
loop control system. Lower order system models are typically required to reduce the complexity
of the system.

Many model-based approaches are being developed and have shown promising results.
Proper Orthogonal Decomposition (POD) based low order models have been studied extensively
(Holmes et al. 1998; Tadmor et al. 2007) owing to their relatively high resolution and low
computational intensity. Other reduced-basis models have also been studied (Coller et al. 2000;
Wang et al. 2003). These models require that multiple measurements are simultaneously
available in the flow field. However, this is impractical in feedback separation control and
surface measurements are required in most applications. Ausseur et al. (2007) implemented a
POD/mLSM proportional feedback control using the velocity field and surface pressure data to
delay flow separation.

Some non-model based control approaches have gained favor because they bypass the
complication of modeling separated flow while focusing on the primary control objectives. For
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example, Banaszuk et al. (2003) and Becker et al. (2006) used an extremum-seeking closed-loop
control algorithm to optimize the pressure recovery and lift, respectively. The present author in
Tian et al. (2006) used a multi-dimensional optimization algorithm to optimize lift-to-drag ratio
over an airfoil. These approaches are capable of “training” the excitation signals to be most
effective in terms of the objective functions (i.e., pressure recovery, lift-to-drag ratio, etc.). The
main drawback of the above approaches is that they operate on a time scale that is much larger
than that of the flow dynamics. In other words, they work on time-averaged objective functions
by explicitly taking advantage of the nonlinear nature of the fluid dynamics. This approach has
the drawback of having to deal or cope with the nonlinear dynamics with no guarantee of
success. This kind of approach is an example of the quasi-static control scheme shown in Figure
1-4.

On the other hand, the dynamic feedback control is used to model and control separated
flow structures based on surface pressure data alone. The well-developed adaptive system
identification (ID) algorithms in the controls community are utilized to model the flow system
dynamics between the actuators and unsteady surface pressure sensors. The system ID
algorithms generate known actuation signals and relate these signals with the surface pressure
response measured by sensors. Linear dynamical equations are then used to model the
relationship in a gradient descent sense (Haykin 2002). The system therein includes the dynamics
of the actuators, the flow structures excited by the actuation, and the dynamics of the sensors.
The system information is then used to predict the subsequent evolution of the pressure
fluctuations. Control is applied using a spanwise zero-net-mass-flux (ZNMF) actuator slot by
attempting to reduce the power of the surface pressure fluctuations in a closed-loop fashion, thus
suppressing the unsteady flow fluctuations based on predicted flow characteristics. A similar
idea has been applied to control of flow-induced cavity oscillations (Cattafesta et al. 1999) and
turbulent boundary layer control (Rathnasingham and Breuer 2003). This kind of approach can
be categorized as a dynamic control scheme shown in Figure 1-4.

1.3.4 Closed-Loop Control Algorithms

According to the classification in Figure 1-4, the control algorithms can be divided into
two categories: quasi-static and dynamic. Optimization algorithms are used in this research as
quasi-static algorithms. They are used to optimize target functions (such as lift, pressure
recovery, etc.) in a recursive but static or time-averaged fashion. On the other hand, recursive
system identification and disturbance rejection algorithms are widely used in active noise control
area as dynamic algorithms. No one has attempted to apply these algorithms to the closed-loop
separation control problem. This section gives a brief review of the two types of the algorithms.
Details will be given in chapter 2.

1.3.4.1 Optimization algorithms

Optimization algorithms are widely used by decision-makers (e.g. economists,
governments). They often need to choose an action to optimize target or cost functions, such as
income, profit, etc. In a typically optimization problem, one is given a single function f that
depends on one or more independent variables. The goal is to find the value of those variables
where f is a maximum or a minimum value. In this research, various optimization algorithms
are used to maximize/minimize different cost functions, such as lift, drag and pressure recovery.
When using the optimization algorithms, some constraints are typically included in the
algorithms. For example, one often seeks to limit the energy expenditure while optimizing the
cost function. One should also notice that, unlike the applications used by the decision-makers,
the cost functions used in this research are measured by sensors instead of analytical functions.
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Some established minimization and maximization algorithms are summarized by Press et
al. (1992). Most optimization algorithms can be easily implemented in a multi-dimensional
space. The downhill simplex algorithm and the Powell’s algorithm do not require derivative
calculations. Between these two algorithms, the downhill simplex algorithm is more concise and
self-contained. Both of them require storage of order N*, where N is the number of dimensions
or independent variables. Two other algorithms, the conjugate gradient and quasi-Newton
methods, do require the calculation of derivatives. The conjugate gradient method requires only
order N storage, while the quasi-Newton method requires storage of order N’. On the other
hand, none of the algorithms mentioned above are guaranteed to find a global extremum. They
can lead to local extrema. Finding a global extremum is actually a very difficult problem. Two
standard methods are typically used to improve the probability of finding a global extremum: 1)
search for local extrema from various initial conditions and pick the most extreme of these; 2)
perturb a local extremum to see if the algorithm goes back to the same value or finds a better
result.

There are several global search algorithms that are currently active in research(e.g.
Genetic Algorithms (GA) (Holland 1975), Particle Swarm Optimization (PSO) (Kennedy 1997)
and Simulated Annealing Method (Haftka and Giirdal 1992)). The genetic algorithms and the
particle swarm optimization are both derived from biology. They are population-based
algorithms, namely they generate a population of points at each iteration and the population
approaches an optimal solution. The GA and PSO take advantage of the large search population
to increase probability of approaching a global optimum. The simulated annealing method is an
analogy with thermodynamics, especially with the way metals cool and anneal, in which process
nature finds the minimum energy state. The essence of the algorithm is to allow increase of cost
function with some probability to improve the changes to find a global minimum.

Another optimization algorithm that has been applied to flow control problems is called
the extremum-seeking algorithm. As a self-optimizing control algorithm, the extremum-seeking
control was first introduced in the 1950s. After Krstic and Wang (1999) provided the stability
studies, there has been a resurgence of interest of this control algorithm. Banaszuk et al. (2003)
attempted to use this algorithm in the diffuser separation control problem. They were successful
in maximizing the pressure recovery in the diffuser. They also used this algorithm to control
combustion instability (Banaszuk et al. 2000).

1.3.4.2 System identification and disturbance rejection algorithms

System identification and disturbance rejection technologies are well developed and
various algorithms are available in the active noise control area. Cattafesta et al. (1999) have
applied these algorithms to other flow control problems, such as cavity resonance control. No
one has attempted to apply this kind of approach to the separation control problem. In this
research, this approach is investigated. Some system identification and disturbance rejection
algorithms are reviewed in this section.

System identification algorithms. In general, system identification (ID) uses measured
signals (i.e., inputs and outputs of the system) to identify (or estimate) the unknown system
dynamics. It provides necessary system information for control algorithms.  System
identification algorithms can be divided into two categories: offline (or batch) and online (or
recursive). Offline algorithms first acquire data and then try to estimate a low-order dynamical
system model using these data offline. Online algorithms identify systems recursively while
acquiring data in real-time. Online system identification is also known as adaptive filtering.
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Least square (LS) identification algorithm is a generally used offline algorithm. Akers
and Bernstein (1997 A) applied this approach to the ARMARKOV/LS identification algorithm
with an ARMARKOYV representation (see Chapter 2 for a detailed description of the algorithm).
The ARMARKOV/LS identification algorithm uses vectors comprised of input-output data with
a least-squares criterion to estimate a weight matrix containing a specified number of Markov
(i.e., pulse response) parameters of the system. Then the eigensystem realization algorithm
(ERA) (Juang 1994) is used to construct a minimal state space realization of the system. This is
referred to as the ARMARKOV/LS/ERA identification algorithm.

The ARMARKOV/LS/ERA identification algorithm has two clear advantages compared
to the ARMA/LS identification algorithm (Akers and Bernstein 1997 A). First, eigenvalues of
the ARMARKOV representation are less sensitive to noise compared with eigenvalues of the
ARMA representation. Second, the singular value decomposition of a block Hankel matrix
constructed from the estimated Markov parameters provides an efficient model order indicator
(Juang 1994, pp. 139).

As far as online algorithms are concerned, the least-mean-square (LMS) algorithm is the
most commonly used algorithm. A more computationally intensive algorithm called the
recursive-least-square (RLS) algorithm has faster convergence and smaller steady-state error
than the LMS algorithm (Haykin 2002) but is more computationally intensive. Two different
types of structure that can be applied to each of the algorithms are the finite-impulse-response
(FIR) and the infinite-impulse-response (IIR) filters. The FIR filter is widely used due to its
simple architecture and inherent stability as an all-zero model. However, its simple structure
introduces difficulties for a system with low damping. The IIR filter can solve this problem with
significantly lower-order and, therefore, lead to reduced computational expense. Unfortunately,
the disadvantages of an IIR filter include more complicated adaptive algorithms compared with
an FIR filter and the possible stability problems introduced by the pole(s) in the model (Haykin
2002; Shynk 1989; Netto and Diniz 1995).

Applying the LMS algorithm to the ARMARKOV representation, Akers and Bernstein
(1997 B) introduced the recursive ARMARKOV/Toeplitz algorithm that is based upon recursive
identification of the Markov parameters of a system. It estimates the Markov parameters
recursively using time-domain, input-output data and then constructs the estimated model with
the Markov parameters.

Disturbance rejection algorithms. As mentioned earlier, one of the possible control
schemes for closed-loop separation control is to reduce velocity and pressure fluctuations in the
separated region. This control scheme is generally called disturbance rejection.

Disturbance rejection controllers have been widely used in active noise control
applications (Kuo and Morgan 1996). Recently, researchers have started to apply adaptive
controllers to flow control problems. For example, Cattafesta et al. (1999) used an adaptive
system to suppress the disturbance induced by the flow over a weapons-bay cavity. The
advantages of using adaptive controllers are that they can adapt themselves according to different
flow conditions and that they can potentially reduce the energy cost associated with the flow
control problems. Cattafesta et al. (1997) showed that the control of cavity flow with closed-
loop control requires one order-of-magnitude less power than that with open loop control.

Commonly used disturbance rejection algorithms include Filtered-X LMS (FXLMS),
Filtered-U LMS (FULMS), Filtered-X RLS (FXRLS) and Filtered-U RLS (FXRLS) algorithms
(Kuo and Morgan 1996). Besides these, the ARMARKOV adaptive control algorithm was first
introduced by Venugopal and Berstein (1997) and further developed by Sane et al. (2001). The
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underling model structure of the ARMARKOV adaptive control algorithm is the ARMARKOV
representation, which is an extension of the ARMA representation with explicit impulse response
(Markov) parameters. The ARMARKOYV adaptive control algorithm doesn’t require a model of
the control-to-reference transfer function nor does it require a model of the transfer function from
plant disturbances to sensors (Sane et al. 2001). The only transfer function needed is the control
to performance transfer function, which can be identified simultaneously using the recursive
ARMARKOV/Toeplitz system identification algorithm described in the previous section.
1.4 Objectives
e To explore suitable linear and nonlinear control objectives and strategies for
closed-loop control of separated flows.
e To implement optimization algorithms and system identification/disturbance
rejection algorithms for closed-loop control of separated flow on a wind tunnel
airfoil model (NACA 0025).
e To analyze performance, adaptability, costs, and limitations of closed-loop
separation control algorithms.
* To investigate the relevant flow physics of successful feedback control strategies.
1.5 Approach ’

The proposed closed-loop separation control includes two key parts: modeling and
control strategies. As far as modeling is concerned, two types of approaches can be implemented
to model the flow characteristics: 1) a reduced-order flow model based on the Navier-Stokes
equations, 2) system identification techniques. The first approach is widely used in
computational flow control simulations. This research will concentrate on experimental studies
by using system identification techniques that have not yet been applied to the separation control
problem. The dynamical systems model will include the dynamics of actuators, sensors, and the
flow system. Then the disturbance rejection algorithm is used to suppress flow fluctuations (e.g.,
measured by unsteady pressure transducers).

One the other hand, for the non-model based optimization algorithms, no system
identification is needed. The possible cost functions for the algorithm are summarized as
follows. Since the suction pressure region of the upper surface of the airfoil is primarily
responsible for lift generation and drag reduction, the static pressure recovery coefficient

dC, / d(x/c) over the upper surface of the airfoil is a reasonable candidate as a cost function to

maximize for feedback separation control. Other candidates for cost functions are lift and drag
or combinations of these (e.g., lift/drag ratio). The benefit of using lift/drag is that L/D is a
global or integrated quantity and is less sensitive to sensor location. The objectives for the
controller are clear, i.e. to minimize drag and to maximize lift or the ratio of lift/drag. The
experimental setup uses a lift/drag balance for this purpose.
1.6  Outline of This Dissertation

A theoretical background on system identification, control, and optimization algorithms
will be discussed in Chapter 2. Simulation results and validation experiments of the algorithms
will then be presented in Chapter 3. Chapter 4 describes the experimental setup and techniques
for this research. Chapter 5 presents experimental results and discussion. Summary and future
work will be presented in the last chapter.
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Figure 1-1. Separation of flow over an airfoil.
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Figure 1-2. Types of velocity profiles as a function of pressure gradient (White 1991).
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Figure 1-3. Lift and drag coefficients of NACA 0025 airfoil at Re =100,000.

19



Flow Control

Approaches

[ 1
[Passive Control] [ Active Control ]

i
[ 1
[ Open-Loop J l Closed-Loop l
[ 1
[ Quasi-static ] ( Dynamic ]

Figure 1-4. Classification of flow control. (Cattafesta et al. 2003)
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Figure 1-5. Characterization of possible frequency scales in separated flow (Mittal et al. 2005).
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2 Theoretical Background

This chapter presents detailed descriptions and derivations of the algorithms that are used
in this research. The algorithms include optimization, system identification, and disturbance
rejection algorithms.

2.1 Optimization Algorithms

Some established minimization and maximization algorithms are summarized by Press et
al. (1992). The downhill simplex algorithm and the Powell’s algorithm do not require derivative
calculations, which makes them good candidates for this research since derivative calculations
are problematic for (usually noisy) experimental data. Between these two algorithms, the
downhill simplex algorithm is more concise and self-contained. The so-called extremum-
seeking algorithm has been applied to a flow control problem by Banaszuk et al. (2003). Thus,
this algorithm is also summarized here.

2.1.1 Downhill Simplex Algorithm

The downhill simplex algorithm is implemented to minimize an objective function (e.g.,
drag-to-lift ratio). The benefits of the algorithm are its simplicity, applicability to
multidimensional optimization and robust performance. The algorithm searches downhill in a
straightforward fashion that makes no prior assumptions about the function. The downhill
simplex algorithm requires only function evaluations, not derivatives. Since it does not make
any assumptions about the function, it can be very slow sometimes. However, it can be very
robust in the sense that it guarantees to find a minimum (at least a local minimum) (Press et al.
1992).

A simplex is the geometrical object consisting, in N dimensions, of N+1 points (or
vertices) whereas the N+1 points span a N -dimensional vector space (Press et al. 1992). For
example, in two dimensions, a simplex is a triangle. In three dimensions, it is a tetrahedron,
although not necessarily a regular tetrahedron. The downhill simplex algorithm makes use of the
geometrical concept of a simplex and works its way in the local downhill direction until it
encounters a (at least, local) minimum.

The key steps of the downhill simplex algorithm are summarized as follows:

¢ Evaluate the cost function at chosen initial points. Note that there should be N+1
initial points, defining an initial simplex. For two or higher dimensions, the initial
points should not be linearly dependent.

e Take a series of steps to move in the downhill direction. As an example, the steps
for three-dimensional search are illustrated in Figure 2-1. In the figure,
“Reflection” means that the algorithm reflects the highest (i.e. worst) point about
the center of the three lower (i.e. better) points with some coefficients to the other
side of the plane and then evaluates the cost function at the reflected point.
“Expansion” means to expand further along the reflection direction when the
“Reflection” point does improve (i.e., lower the cost function). “Contraction”
means to move the highest (i.e. worst) point towards the plane formed by the three
lower (i.e. better) points, thus contracting the original simplex. To summarize, all
the necessary steps taken here are to move the worst point reference to the plane
formed by the other better points to search for a better point.
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* Stop when some termination criteria are met. For example, the moving distance
is smaller than some tolerance value.
2.1.2 Extremum Seeking Algorithm
Artiyur and Krstic (2003) present the theoretic details and some applications of the
extremum-seeking algorithm. Simulations using the algorithm can be done following the block
diagram in Figure 2-2. The simple proof that this algorithm will drive f(6) to its extremum is
summarized below.

First, assume that f(0) has a minimum f* and can be approximated as the following form:

o & 7 ant
f(6)=F +—2—!(e-e ) )
where 0 is the optimal input and f is the local curvature of the cost function f(6) near 0.
Since it is assumed that f(8) has a minimum, f should be larger than zero for this case.

Next, define the estimated error:

6=0"-6 (5)
where 8 is the estimated optimal input.
From Figure 2-2,
0=0+asin(wt)=0"-0+asin(wt) (6)
Substituting equation (6) into equation (4) results in
* f" ~72
=f(0)=f +—| asin(wt)-0 7
y=F(O)=f"+ [ asin(w0)-0 (7)
) 1-cos(2wt .
Expand equation (7) and apply smz(wt)=—cow to obtain
P2 *R2
y=f "+ i sin®(wt)-f "aesin(wt)+f—2——
f'a’ fa’ £'6? &
—f 228 os2wh)-f absin(wi)+

From Figure 2-2, this signal y will pass through a high pass filter . Let O<w, <w,

s+w,
then all the DC components in equation (8) will be removed while the oscillatory terms remain.
"2

- f: cos(2wt)-f aBsin(wt) )

Next, 77 is multiplied by asin(wt) to give

™ o2
fj cos(2wt)sin(wt)-f aBsin(wt)? (10)

€=-

1-cos(2wt) -

Using the trigonometric identities sin®(wt)= d

sin(3wt)-sin(wt)
2

cos(2wt)sin(wt)= results in
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~1-cos(2wt)

T )
g:-f a“ sin(3wt)-sin(wt) £ ab

4 2

f'a0 f'a® | fgt
= sin(wt)-

(11)

sin(3wt)+f7aecos(2wt)

From Figure 2-2, this signal € passes through a low pass filter. Let O<w,<w , then all the
high frequency terms will be removed and only the DC term remains.

gggt E7 (12)
This signal then passes through an integrator
~ f'ab k
0=—— 13
N (13)
This gives
fufet &g (14)
2
From equation (5), assuming f~ is fixed, then
0=-0 (15)
From equations (14) and (15), one can obtain the first-order differential equation
: flak ~
0=-——20 16
) (16)
with the solution
.o ek
0=0,¢ 2 (17)

Since f is assumed to be positive and a and k are positive constants, the estimated error

6 will exponentially decay to zero.
2.2 System Identification Algorithms

System identification (ID) uses measured signals (i.e., inputs and outputs of the system)
to identify (or estimate) the unknown parameters of an assumed dynamical systems model. It
thus provides the necessary system information for control algorithms. System identification
algorithms can be divided into two categories: offline (or batch) and online (or recursive).
Offline algorithms first digitize a data record and then try to estimate the system using these data
offline, usually via a least squares method. Conversely, online algorithms identify systems
recursively while acquiring data in real-time. Online system identification is also known as
adaptive filtering.

In this research, three system ID algorithms will be investigated: ARMARKOV/LS,
ARMARKOV/LS/ERA and recursive ARMARKOV/Toeplitz algorithms. They are all based on
the ARMARKOV representation, which explicitly contains Markov parameters (i.e., pulse
response) of the system. The well known ARMA representation contains only one Markov
parameter and is a special case of the ARMARKOV representation. The main advantage of
these algorithms is their robustness with respect to low signal-to-noise ratios (Akers and
Bernstein 1997 A, B). The ARMARKOV/LS algorithm is an offline algorithm and implements
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an overparameterized realization of the system. The ARMARKOV/LS/ERA algorithm uses the
same procedures to identify the system parameters as the ARMARKOV/LS algorithm, but
implements a minimal realization of the system. The recursive ARMARKOV/Toeplitz
algorithm is an online algorithm. The advantage of using an online algorithm is that it can adapt
to the changing system.
2.2.1 ARMARKOYV/LS Algorithm
Consider the discrete-time finite-dimensional linear time-invariant system:
x(k+1)=Ax(k)+Bu(k)

(18)
y(k)=Cx(k)+Du(k)

where Ae R™,Be R™,Ce R*,De R™, and i and | are the number of inputs and outputs,
respectively, of the system. For a single-input/single-output (SISO) system,i=l=1. The
algorithm is derived below for a SISO system.
The Markov parameters H; are defined by
H =D j=-1
. (19)
H;=CA'B j20

Next, define the ARMARKOV regressor vector @, (k) R*™:
y(k-p)
y(k-p-n+1)

£ 20
0,002 7 (20)

| u(k-p-n+1) |

where n is the order of the system and p is the number of Markov parameters. Here, y and u

denote measured input and output of the system described in equation (18), respectively.
Next define the estimated output of the system

J(k)=W®, 1)
where the ARMARKOV weight matrix W is defined by
W2aLA H,LH B ] (22)
and

A, é[am ST [ R"™
A Ixn
Bu _[BM "'Bp'n]e R

The expression of the weight matrix Wu is then determined to minimize the output error

(23)

cost function defined below.
First, define the output error

e(k)=y(k)-y(k) (24)

and the output mean squared error cost function
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=13lag 1yl
J=3 258 W=D o6 (elk) (25)

where N is the number of measurements.
Substituting equations (20), (21), (22) and (24) into equation (25) results in

:J=§ié(y(k)-W<p(k))T(y(k)-w(p(k)) 26)
:>J=%i%(yT(k)-(DT(k)WT)(y(k)-W®(k)) 27)

11, ¢ T VT
:>J=§k2=l:5(y (k)y(k)-@" (k) W'y (k) (28)

-y (K) WO (k) +0" (k) WTW (k) @(k))
Because ®" (k)W'y(k) and y" (k) W®(k) are transposes of each other and are also
scalars, they are equal to each other. So,

J=§ié(yT (k)y(k)-20" (k) WTy(k)+®" (k) W'W (k) ) (29)

To find the W to minimize the output error cost function defined in equation (25), we set
the partial derivative of J with respect to A equal to zero. So,

a 9]
—=——=0 30
oW oW’ S
From matrix calculus, we derive each term of J in equation (29) first,
—(y" (K)y(k))=0 31
aWT(y ®)y(k)) (31)
9’ T oo T 1 T
e (207 () Wy (1)) =2((07 () y (1)) =20 (k) y (k) (32)
= T
¥ g, (OT (k) WTW®(k T
4 (07 (k) WTWa (k))= Gl )ATA ( ))d(“( fv)
oW’ I(W™W) dW
:—(DT(k)(D(k)(ZWT):'T (33)
=2WO" (k) (k)
Thus,
a;J=0=iil[-2aﬂ(k)y(k)+2v‘v<1>”f(k)(b(k)] (34)
oW’ N&2
N N
:>%ZW(DT(k)(D(k):%Zd)T(k)y(k) (35)
k=1 k=1
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Finally, the expression of the weight matrix W to minimize the output error cost function
1s given by

Wz[%ng(k)y(k)][%gdﬂ(k)(l)(k)].l (36)

After extracting the coefficients A ,B, and H; from W via equation (22), we

can obtain the system transfer function of the ARMARKOV representation, which is defined as
follows

H

""" 4+L+H z"+B, z"'+L+B
G| (Z)= -1 pn-2 wl wn

2" 4o 2 L4,

This is called the ARMARKOV/LS identification algorithm and this algorithm assumes
the numerator has the same order of the denominator for simplicity. For the systems whose
numerators and denominators do not have the same order, some parameters described in equation
(37) will be identified to be approximately zero.

The well-known ARMA representation only has one explicit Markov parameter and it is a

special form of the ARMARKOY representation with p=1 in (37)
H z"+B, 2" +L+B,,

2"+0, 2" +L+a,

(37)

G,(z)= (38)

For system identification problems, the order of the system is usually not known in
advance, so we adjust n and x4 to improve the performance of the system identification

algorithm.

2.2.2 ARMARKOV/LS/ERA Algorithm

The ARMARKOV/LS/ERA algorithm obtains a minimal realization of the transfer
function of the system from the Markov parameters. It uses the same algorithm as the

ARMARKOV/LS algorithm to obtain the weight matrix " by equation (36). Then the Markov
parameters HJ. can be extracted from equation (36) by using equation (22). Next, define the

Markov block Hankel matrix for a SISO system:
H o H

] j¥s

B [ " (39)
H. = H

JHr jHrs

where r,s are any positive integers. In this research, r is set to be equal to s for convenience.

Then, we apply the singular value decomposition as describe in Akers and Bernstein
(1997A)

H..=P5 Q" (40)

where P"P=Q"Q=I and S, = diagonal matrix of singular values.
From the Eigenvalue Realization Algorithm (ERA), (Juang 1994, pp. 133-137)
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A=Sr,s' o PTH r.s.lQSr.s-”2
B=Sm"2QTEs
C=E TPS 172

D=H,

(41)

1
where E, =[ ] The ERA also requires r,s 2 n-1.

x|

This arrives at the minimal state space realization of the system
G,(2)=C(zA-1)" B+D (42)

This is called the ARMARKOV/LS/ERA algorithm. It is a minimal realization because
the system order can be chosen as a minimal value when using the singular value decomposition
in equation (40). However, an important drawback of this algorithm is that the singular value
decomposition in equation (2.23) is very computational intensive.

Theoretically, the rank of the S ; matrix should be the rank of the system. However, in
practical applications, the singular value decomposition will return more singular values than the

system order due to measurement noise, and so the extra singular values should be small. So,
only the largest n singular values obtained by the singular value decomposition will be used.

2.2.3 Recursive ARMARKOV/Toeplitz Algorithm
First, define the ARMARKOV regressor vector @, (k) e R*"%%

y(k-p)
y(k-p-p-n+2)

= 4
®, (k) o) (43)

| u(k-p-p-n+2) |

where n is the order of a system, p is the number of Markov parameters, and a new parameter
p determines the averaging window of input-output data that appears in the above regressor
vector.

It follows that

Jk)=Wo, (44)

where the ARMARKOV/Toeplitz weight matrix W e RP®#2% i the block-Toeplitz matrix
defined by

A, 0 - 0 H, H, B, 0 - 0
aal % EO %% S -
e BE RS O RR% D

0 -~ 0 -A, 0 0 H, H, B,
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and A, 2[a,, -0,]IR™ B, £[B, --B,,]e R™ and H, are the Markov parameters.

As before, define the output error (k) and the output error cost function J (k)

e(k) 2 Y(k)-Y(k) (46)
3(K)2 267 (K)e (k) @)
Next, the gradient of J (k) with respect to W(K) can be calculated by
dJ(k) T
————=-Uo| e(k)® " (k 48
S [0 (k) | (48)

where ° denotes the Hadamard product (i.e. element-wise matrix product) and Ue RP®"?P2
is defined by

1xn D === O le(p+n) g =
Ut 0 Fy Wt B : (49)
E gy R @ % 0
0 - 0 I,.0 0 T
Finally, the recursive update law for the weight matrix W is given by
- - dJ(k)
W(k+1) = W(k) —nk) ———— (50)
W)
In equation (50), n(k) is the adaptive step size. The optimal adaptive step size n, (k) is
defined as
o [
nop‘ (k) = " ||2 2 (51)
dJ(k)
OW(K)|,
where |+|, denotes the spectral norm.

The computationally efficient step size n, (k) (namely, it is more computational efficient
since it only needs to calculate the normal ARMARKOV regressor vector @ (k) ) is defined as

(52)

In order to assure convergence, n(k)should satisfy n(k)=anom(k) or nk)=an,, k),
wherea € (0,2).
After W matrix is obtained by (50), we can extract the coefficients Apou and H ; from

(22). Then, we can obtain the system transfer function of the ARMARKOYV representation form,
which is defined in equation (37). Since the A ,B, and H; coefficients are updated every

iteration, this algorithm is called as the recursive ARMARKOV/Toeplitz algorithm.
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2.3 Adaptive Disturbance Rejection Algorithms

Disturbance rejection controllers have been widely used in active noise control
applications (Kuo and Morgan 1996). A block diagram of a standard disturbance rejection
problems is shown in Figure 2-3, where w is the disturbance, u is the control signal, y is the

reference signal, z is the performance signal and G, is the disturbance rejection controller. The

goal for the controller is to generate a control signal u to minimize some cost function of the
performance signal. The four transfer matrices, namely, the primary path G, , the secondary

path G

noise control literature (Kuo and Morgan 1996). The feedforward-type disturbance rejection
algorithms, such as FXLMS and FXRLS, assume that Gyu=0 (no feedback path) and Gywzl.

On the other hand, the ARMARKOYV disturbance rejection algorithm does not make these
assumptions. All the disturbance rejection algorithms require identifying the secondary path G,

zw ?

the reference path G, and the feedback path G ,, are standard terminology in the

Zu ?

by online or offline system identification methods.
2.3.1 ARMARKOYV Disturbance Rejection Algorithm
Consider the linear discrete time two-input/two-output system (shown in Figure 2-3) given
by

2(k)=G,, w(k)+G_ u(k) (53)

y(k)=G, wk)+G ,u(k) (54)
where the disturbance w(k), the control u(k), the reference y(k) and the performance z(k) are
i R R R" and R" respectively, and m and 1 denote the number of inputs and outputs,
respectively. The system transfer matrices G,, (primary path), G, (secondary path), Gyw
(reference path) and Gyu (control path) are in R'>™  R'W™ R>™ and R»™ , respectively.
The objective of the active noise or vibration control problems is to determine a controller
G, e R™™ that produces a control signal u(k)=G_y(k) such that the performance measure z(k)

is minimized (Sane et al. 2001). A measurement of z(k) is used to adapt G, .
The ARMARKOV form of (53) - (54) is

n M n
2(k) = D -oz(k-pj-D+ ) H,, o wk-i+ 1)+ ) B, wik-p-j-1)
j=1 j=1 j=1

y (55)
+Y H,,yutk-j+1)+Y B, u(k-p-j+1)
=1 j=1
n N n
Y= -0 y(kopioj 1+ 3 Hy, wikej+ D+ 3B, w(k-p-j-1)
(56)
+Y H, uk+1)+) B u(k-p-j+1)
=1 j=1
where ¢,€R, B, ;,H,  .€ R0, Bl e R'™ B,.H, € RY™ B, H,, e T

is the order of the system, and x is the number of the Markov parameters.
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Then, we define the extended performance vector Z(k), the extended measurement
vector Y(k), and the extended control vector U(k) as

Z(k) 2[z(k) L z(k-p+1)] (57)
Y(K) 2 [y(k) L y(k-p+1)]' (58)
U(k) 2 [u(k) L u(k-p,+1)]" (59)

where p is an averaging or windowing parameter and p_=(p+n+p-1).
The ARMARKOV regressor vectors @, and @  are defined by

®,, 2[z(kp) - z(k-p-p-n+2) w(k)--- w(k-p-p-n+2)]’ (60)
and
O, 2[yk-p) - ykp-p-n+2) wk) - wk-p-p-n+2)]’ 61)
Then (55) and (56) can be written as
Z(k)=W, ®_ +B, U(k) (62)
Y(k)=W, o  +B U(k) (63)
where W, B, , W, and B are the ARMARKOV weight matrices. Only B, will be used in

the control algorithm (shown later), and it will be obtained using the ARMARKOV/Toeplitz
system identification algorithm. The ARMARKOV control matrix B, is given by

_qu.-l ik qu.u»Z Bzu.l o Bzu.n Ol,xm“ o Ol,xm“
A OI. xm
B,=| . (64)
lemu
_Ol,xm“ A qu.«l qu.u-Z Bzu.l e zun |

where 0, 1is the zero matrix.

Next, the ARMARKOV adaptive disturbance rejection algorithm is derived. The control
signal u(k) is given by

Ne He ne
u(k)=) " -a u(k-p -+ 1+ H,yk+1)+ D B y(k-p -j+1) (65)
j=1 j=1 j=1
where ¢ ;€ R and H ;,B ;€ R™

Similarly, the delayed versions are

u(k-1)=3-a_u(k-p, -j)+z H., y(k-)+Y B, y(k-p,-) (66)

=1 j=1
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u(k-p,+1)=) -0 u(k- -j-p. +2)

=1

(67)
+i HCJ_l y(k-j-p. +2)+-an1 B. J.y(k-pc -J-P.+2)
= =
Substituting all these equations in (59) and reordering gives
U(k)=i Lok-i+1)R, @, (k) (68)
i1
where
o) 2[ -a,, (01, - -a., (O, H, (k) H, () B,k B, (K] (69)
®,, (k)£ [ulk-p) - ulkpnp+2)  yK) - y(keps np+D)]' (70)
Oy,
L& 1, (71)
URE——
and R £ Oareom, Tora Qapcim, Oairn, Qo Oarn, (72)
 aseom, s Vosman. ey Y O
with ¢, £n_m, and g, = (n_+p -1, .
Thus from (62) and (68), we obtain
Zk)2W, 0, (k+B,, pz Lok-i+D)R, @, (k)=W,, @, (k)+B, U(k) (73)

i=1
Next, evaluate the performance of the current value of 6(k) based upon the behavior of
the system during the previous p steps to result in the definition of the estimated performance

Z(k) by

2002 W, 0,, K+B,, Y LOKR 0, (K) (74)

w W 1 uy
i=1

Substituting (73) into (74), we obtain the estimated performance in terms of known and
measured variables

2(k)éZ<k>-Bw(U(k)-i‘Lﬁ(k)Rid)u, (k)) (75)

Using (75), we define the estimated performance cost function

J(k)=%ZT (K)Z(k) (76)
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The purpose for the ARMARKOV adaptive controller is to obtain the controller
parameters 6(k) such that the performance cost function J(k) is minimized. Using matrix

derivative formulae, the gradient of J(k) with respect to 6(k) is given by

AK) R 175 T T
——=) LB, Z(k)® (k)R 77
= g,m<)wu, (77)
The gradient is used in the update law
9(k+1)=9(k)-n(k)———gg§t; (78)

where n(k) is the adaptive step size. An implementable adaptive step size 7,,, (k) is used
1

y
F

, denote the Frobenius norm and the spectral norm (Golub and Van Loan

Mimp (K) = (79)

p.|B

2
@, ®,

zu

- and

1996), respectively.
The steps involved in implementing the ARMARKOV adaptive disturbance rejection
algorithm are summarized as follows:

. Obtain the matrix B, (eqn. (64)) by using the recursive ARMARKOV/Toeplitz system

identification algorithm (eqn. (45)) or the offline ARMARKOV/LS (eqn. (36)).
° Calculate the control signal u(k) from the controller parameter matrix 6(k) and the vector

d)uy (k) (eqgn. (68)).
. Use the signals u(k), z(k) and y(k) to update the vectors Z(k) (eqn.(75)) and (I)uy (k)
(eqgn. (70)).

. Calculate the gradient

where

dJ(k)
20(k)
° Calculate the implementable adaptive step size L (k) (eqgn. (79)).

(eqn. (77)).

o Update the controller parameter matrix 0(k) — 0(k+1) (eqn (78)).
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Figure 2-1. Flow chart of downhill simplex algorithm.
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3 Simulation and Validation experiments

Before the algorithms are used for closed-loop separation control in the wind tunnel
experiments, they are tested by using Matlab/Simulink simulations or validation experiments.
The purpose of this chapter is to ensure that the algorithms work as desired.

3.1 Optimization Simulations

3.1.1 Downhill Simplex Simulation Results

The downhill simplex algorithm is programmed in Matlab. The performance of the
algorithm is illustrated by a 1-dimensional and a 2-dimensional simulation cases. This algorithm
can be easily extended to higher dimensions.

In the 1-dimensional case, the cost function f(x) is chosen to be an 8" order polynomial

function of x, which has a local minimum at x=14.2 and a global minimum at x=67.3 as shown
in Figure 3-1. Two initial conditions are selected to demonstrate that this algorithm can be
“trapped” by a local minimum. The first initial condition is at about x=45. One should notice
that for this 1-dimensional problem, there should be two independent points (a simplex) as the
initial condition. As shown in Figure 3-1, the downhill simplex algorithm crawls down to the
global minimum (red trace). On the other hand, the second initial condition is at about x=30,
which leads the algorithm to the local minimum (blue trace). This is dictated by the inherent
“downhill” nature of the algorithm.

Another example is to demonstrate how the downhill simplex algorithm works in two-
dimensional space. The cost function is obtained in Matlab by the “peaks” command. The
formula for the cost function is as follows:

- e 21} 5_ 3 5 -xz-yz_l (x+1)?-y?
2_3[(1 x)%e™ (y+1) ] 10(5x*-y")e™ " -2e (80)

This function has two local minima and a global minimum as shown in Figure 3-2.
Similar as the 1-dimensoinal case, the optimization algorithm converges to either a local
minimum (blue trace) or the global minimum (red trace) depending on the initial condition.
Although each iteration of the algorithm requires several steps (Chapter 2), it only takes 9
iterations to find the global minimum. This result is encouraging and suggests that it can be fast
for some cases. One can also adjust the termination tolerance to control the time consumption.
On the other hand, the time consumption of the separation control experiments is also dependent
on other factors, such as data acquisition. This will be discussed further in Chapter 5.

3.1.2 Extremum Seeking Simulation Results

The extremum seeking algorithm is implemented in Simulink. Figure 3-3 shows the
simulation block diagram for the extremum seeking control. In the simulation, the algorithm
seeks a maximum instead of a minimum. One can easily modify the program to search for a
minimum by adding a negative sign to the cost function. Two numerical models are tested. The

first model is a quadratic function f=f '-(9-9')2, which has a single maximum f* at 0=0"as

shown in Figure 3-4. In this case, f  is set to 10 and 0* is set to 5. The second model is a
double hump model, which is fitted by a 8" order polynomial function, which is the same as the
model shown in Figure 3-1 with a opposite sign. It has a local maximum and a global maximum
as shown in Figure 3-5.
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The ARMARKOV disturbance rejection algorithm requires the following three
parameters: the order of the controller n_, the number of Markov parameters of the controller p_

and the adaptive step size constant y that controls the convergence rate of the controller.

The controller uses the system information identified by the ARMARKOV/Toeplitz
system ID with the parameters of p=n=2, p=10 and SNR=20 dB (shown in Figure 3-21). All
cases of the controller design use the same identified system.

Band-limited white noise with frequency of 0 — 150 Hz and variance of 0.09 is used to
excite the disturbance piezoceramics. Figure 3-26 and Figure 3-27 show the time data of the
performance and control signals with the parameters of n =2, p =20 and Y =1. The system ID

is off for the whole period and the controller is off initially and turned on at t = 20 sec. In Figure
3-28, the power spectra of the performance signal with control off and on are compared. The
power spectra were calculated by using the time data of 20-second duration with NFFT=1024,
50% overlap and a hanning window. The “control on” case is taken after the controller is turned

on for 30 seconds. The performance of suppression is calculated by 10glog,, (csf,,,f / ofm) and this

case gives 11.7 dB suppression. Interestingly, in Figure 3-28, the power around 70 Hz and 120
Hz of the “control on” case is higher than that of the “control off” case. This is generally defined
as spillover (Hong and Bernstein 1998). Hong and Bernstein (1998) used the Bode integral
constraint to analyze the spillover problem and concluded that the spillover is inevitable if the
reference and performance signals are collocated or the disturbance and control actuators are
collocated. For this vibration control test, the reference and performance signals are collocated,
thus the spillover is unavoidable.

Figure 3-29, Figure 3-30 and Figure 3-32 show the performance of the disturbance

rejection algorithm with varying n_, p. and T, respectively, while other parameters are held

constant. From
Table 3-2 and Table 3-3, it is interesting to find that there is not much difference of the

suppression performance for varying n_ and p_. However, the step size parameter I' does play

a significant role. Larger Y gives much faster convergence and better performance. However,
if Y is too large, it is possible for the controller to become unstable. This tradeoff should be
kept in mind when choosing Y .

The disturbance rejection controller can also be run at the “ID and control” mode. In this
mode, the band-limited white noise with frequency of 0 — 150 Hz and variance of 0.09 is used to
excite the disturbance piezoceramics. Meanwhile, the band-limited white noise with frequency
of 0 — 150 Hz and variance of 0.01 is added to the controller output. The control signal is shown
in Figure 3-33 and the performance signal is shown in Figure 3-34. Comparing with Figure
3-27, the control signal of the “ID and control” case is significantly larger at the beginning
because of the additive signal u,; and the evolution of the controller output is “buried” under it.

Figure 3-35 compares the power spectra of the performance signal of the two different
modes. It is surprising that the “ID and control” mode results in lower power around the natural
frequency of the beam. This is hard to see in Figure 3-34 because the “ID, then control” mode
seems much better. However, it is not surprising that the “ID and control” mode results in higher
power at other frequencies than the natural frequency because of the additive signal u,. In
addition,

Table 3-5 shows that the “ID, then control” mode gives better suppression performance
of the overall power.
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Unfortunately, for this setup, it is not feasible to test the adaptability of the two modes.
However, this will be done in the wind tunnel experiments.
As a summary, the computational tests are conducted first to determine how the
parameters affect the computational complexity of the system ID and control algorithms. It is
shown that the averaging window number p has much more significant impact on the

computational intensity than the other two parameters for the system ID algorithm. The
dependence of the computational complexity vs. n is approximately twice of that for u.

Similarly it is found that the turnaround time of the control algorithm is approximately linearly
proportional to n_ and p_, while the slope for n_ is approximately twice of that for p_ .

The ARMARKOV/Toeplitz system ID algorithm successfully identifies the system
(control model) and results in very good frequency response approximations. A significant
improvement of the performance of the ARMARKOV system ID over the ARMA (when p=1)
system ID is found. However, too many Markov parameters of the ARMARKOV system ID
may be detrimental to the performance. Higher SNR improves the performance, thus when the
system ID is conducted with unknown noise, the input signal should be chosen as large as
possible within the maximum allowable level.

The order of the controller n_ and the number of Markov parameters p. do not play

significant roles on the performance of the ARMARKOV controller for this vibration control
test. However, this conclusion may vary with different systems and remains to be investigated.
The step size constant 1 significantly affects the convergence rate of the controller. Y should
be chosen as large as possible before it makes the controller unstable. The spillover effect is
identified in this vibration control test. This effect is unavoidable because the “reference signal”
and “performance signal” are collocated (Hong and Bernstein 1998).

summarizes all the parameters that are used in the simulations. Recall that the detailed
derivation of algorithm is given in Chapter 2. Note that the parameters a and w are the main
factors that affect the convergence rate and stability. Thus, they are varied in the simulations to
understand how they affect the performance of the algorithm.

Figure 3-6 demonstrates how a affects the convergence rate while w is fixed to be 50
Hz. Clearly, the convergence rate increases when a decreases. This is consistent with the

analytical solution shown in eqn. (17) for k=1/a®, where the convergence rate (f ak/2) is
dependant on 1/a. However, when a is too small, the algorithm becomes unstable. Figure 3-7

shows how w affects the convergence rate while a is fixed to be 0.001. Apparently, the
convergence rate increases with w. When w is too large, the algorithm again becomes
unstable.

Figure 3-8 and Figure 3-9 show the results of the double hump model. Clearly, the
extremum seeking algorithm drives the cost function f to the local minimum.
3.2 Vibration Control Testbed Setup

Figure 3-10 shows a detailed sketch of the whole vibration control testbed setup. A thin
aluminum cantilever beam with one piezoceramic plate bonded to each side is fixed on a block
base and connected to the ground. The two piezoceramic plates are used to excite the beam by
applying electrical field across their thickness. The piezoceramic plate bonded to the upper side
of the beam is called the "disturbance piezoceramic" because it is used to apply a disturbance
excitation to the beam. The piezoceramic plate bonded to the lower side of the beam is called
the "control piezoceramic" because it is supplied with the controller output signal to counteract
the disturbance actuator. The beam system has a natural frequency of about 97 Hz.
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The goal of the disturbance rejection controller is to mitigate the vibration of the
aluminum beam generated by an unknown disturbance signal. The controller tries to generate a
signal to counteract the vibration of the aluminum beam generated by the “disturbance
piezoceramic”. The performance (or the residue) signal of the controller is measured at the
center of the tip of the beam by a laser-optical displacement sensor. The performance signal is
filtered by a high pass filter with f_=1H, to filter out the dc offset of the displacement sensor and

then amplified by an amplifier with a gain of 10.

The disturbance and control signals are generated by our dASPACE (Model DS1005) DSP
system with 466MHz PowerPC CPU and amplified by two separate channels of an amplifier by
a same gain of 50. The types and conditions of the signals are discussed in details in the next
section. The dSPACE system has a 16-bit A/D and a 16-bit D/A board. The computer can
acquire data using Mlib/Mtrace programs in MATLAB through the dSPACE system.

The whole system was a two-input/two-output system. One input was the control signal
and the other input was the “unmeasured” disturbance signal. The two outputs are termed a
“reference output” and a “performance output”. For this validation test, the reference and
performance outputs were identical. The disturbance rejection algorithm was implemented in the
Simulink environment and compiled and downloaded to the dSPACE system. The disturbance
signal was band-limited white noise with frequency of 0-150 Hz.

The disturbance rejection algorithm runs in one of the following two modes: 1) “ID, then
control” (shown in Figure 3-11): the system (control model) is identified by the
ARMARKOV/Toeplitz system ID algorithm and the identified system weight matrix B, is

transferred to the ARMARKOYV control algorithm; then the controller is turned on and the
“control signal” is switched to the controller output. 2) “ID and control” (shown in Figure 3-12):
the ID and control are turned on simultaneously. The input (u,,) to the system for ID can be
either band-limited white noise or a repetitive linear chirp signal. The controller uses the
identified system to achieve maximum suppression of the vibration of the beam, subject to
constraints on the maximum allowable actuator signal. The “ID and control” mode is better
when the system is a time variant system because this mode updates the system information
during every iteration. However, the “ID and control” mode adds an additional signal u, to the
control signal all the time and this certainly affects the performance of the disturbance rejection
controller. The tradeoff between the adaptation ability and effects on the performance should be
kept in mind.
3.3 Results of the Vibration Control Tests

3.3.1 Computational Tests

For real-time control applications, the turnaround time (defined as the time for the
program to execute one iteration) is required to be less than the sampling time. Complex
algorithms are computationally intensive and have large turnaround time, which requires
choosing a corresponding larger sampling time (or a smaller sampling frequency f ). From the
Shannon sampling theorem, the sampling frequency must be larger than twice the highest
frequency of interest to avoid aliasing. Thus, algorithms with high computational complexity
may not be feasible in flow control applications. The tradeoff between choosing a large f, to

satisfy the sampling theorem and choosing a small f_ to allow a large turnaround time must be
considered. This section analyzes the effects of varying the parameters of the ID and control
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algorithms on the computational intensity. This serves as a reference for choosing the
parameters with regard to the computational intensity.

The sampling frequency was 1024 Hz for the computational tests. In Figure 3-13 and
Figure 3-14, the turnaround time of the system ID algorithm by varying either p, n or p is
plotted, while the other two parameters are fixed at unity. It is shown that the turnaround time is
approximately linearly proportional to both p and n, while the slope for n is approximately
twice of that for p. The dependence of the turnaround time on p is approximately quadratic.
Clearly the averaging window number p has much more significant impact on the computational
intensity than the other two parameters. Figure 3-15 investigates the effects of varying p on the
computational intensity with respect to n+p. As shown, the computational intensity is
proportional to p. From these results, it is suggested to hold p to be a small number and
increase p to improve the system ID performance.

Figure 3-16 shows the effects of varying n_ or p_ on the computational intensity of the

ARMARKOV disturbance rejection algorithm. The results are similar to those of the system ID
algorithm. The turnaround time is approximately linearly proportional to n_ and p_ while the

slope for n_ is approximately twice that for p_.

3.3.2 System Identification

The ARMARKOV/Toeplitz system ID algorithm requires the following three parameters:
the order of the system n, the number of Markov parameters p, and a parameter p that
determines the size of the averaging window. The SNR is also a parameter that can affect the
performance of the system ID algorithm. When the number of Markov parameters is unity, the
ARMARKOV model reduces to an ARMA model. The values of the parameters are limited by
the requirement that the turnaround time must be less the sampling time. As shown in the last
section, p has the smallest effect on the turnaround time; thus in this section the performance of
the system ID algorithm with varying p is compared.

The offline non-parametric fit of the frequency response of the beam system is also
implemented as a comparison and shown as green dot lines in Figure 3-20 - Figure 3-23. The
non-parametric fit uses the “invfreqz” command in MATLAB and implements a second order
approximation. The “invfreqz” command returns the system matrices A and B of the state
space representation. The zero-pole map of the non-parametric fitted system is shown in Figure
3-17. As shown, the beam system is a low damping system because it has two poles that are

very close to the unit circle. The controllability matrix is [B AB]=[1 1.655;0 1] (for a second

order system), which has full rank 2. This means that the system is controllable.

The sampling frequency was 1024 Hz. The input signal used for the system ID was a
periodic chirp signal. The frequency response shown in Figure 3-20 - Figure 3-23 was
implemented with NFFT=1024, no overlap, and a rectangular window.

Figure 3-18 shows a very good match between the measured and fitted outputs of the
system with the system ID parameters of p=n=2, p=10 and SNR=20 dB. Meanwhile, as shown
in Figure 3-19, the weight tracks of the system ID converge at about 0.5 seconds.

Figure 3-20 to Figure 3-23 show the comparison between the measured and fitted
frequency response with the system ID parameters of p=n=2, SNR=20 dB and varying p. A

significant improvement of the system ID is obtained when p changes from 1 (ARMA case) to
10. Figure 3-24 compares the mean square error (MSE) verse time of the system ID with
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varying p. Surprisingly, it is found that the case with p=10 has the best performance. This
indicates that for the beam system, increasing the number of Markov parameters does not
necessarily improve the system ID performance. This also suggests that for a certain system,
there may exist an optimal number of Markov parameters. It is also shown in Figure 3-24 that
for the case with p=40, the convergence rate is slower than the case with p=1, although the final
MSE is better. This indicates that too many Markov parameters may be detrimental to the
performance of the ARMARKOV/Toeplitz system ID.

Figure 3-25 compares the mean square error (MSE) verse time of the system ID with

varying SNR. The SNR is computed by using the formula: SNR=1010g,0(052/(531 ), where o is

the variance of the control signal and o is the variance of the disturbance signal. It is clear that

the system ID performs better with a higher SNR. This suggests that when the system ID is
conducted with unknown disturbance, it is better to apply a large system input within the
maximum allowable range.

3.3.3 Adaptive Disturbance Rejection

The ARMARKOV disturbance rejection algorithm requires the following three
parameters: the order of the controller n_, the number of Markov parameters of the controller p_

and the adaptive step size constant y that controls the convergence rate of the controller.

The controller uses the system information identified by the ARMARKOV/Toeplitz
system ID with the parameters of p=n=2, p=10 and SNR=20 dB (shown in Figure 3-21). All
cases of the controller design use the same identified system.

Band-limited white noise with frequency of 0 — 150 Hz and variance of 0.09 is used to
excite the disturbance piezoceramics. Figure 3-26 and Figure 3-27 show the time data of the
performance and control signals with the parameters of n_=2, p =20 and Y =1. The system ID

is off for the whole period and the controller is off initially and turned on at t = 20 sec. In Figure
3-28, the power spectra of the performance signal with control off and on are compared. The
power spectra were calculated by using the time data of 20-second duration with NFFT=1024,
50% overlap and a hanning window. The *“control on” case is taken after the controller is turned

on for 30 seconds. The performance of suppression is calculated by 10glog,, (62, / oin) and this

case gives 11.7 dB suppression. Interestingly, in Figure 3-28, the power around 70 Hz and 120
Hz of the “control on” case is higher than that of the “control off” case. This is generally defined
as spillover (Hong and Bernstein 1998). Hong and Bernstein (1998) used the Bode integral
constraint to analyze the spillover problem and concluded that the spillover is inevitable if the
reference and performance signals are collocated or the disturbance and control actuators are
collocated. For this vibration control test, the reference and performance signals are collocated,
thus the spillover is unavoidable.

Figure 3-29, Figure 3-30 and Figure 3-32 show the performance of the disturbance

rejection algorithm with varying n_, p. and Y, respectively, while other parameters are held

constant. From

Table 3-2 and Table 3-3, it is interesting to find that there is not much difference of the
suppression performance for varying n_ and p_. However, the step size parameter I does play
a significant role. Larger Y gives much faster convergence and better performance. However,
if Y is too large, it is possible for the controller to become unstable. This tradeoff should be
kept in mind when choosing T .
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The disturbance rejection controller can also be run at the “ID and control” mode. In this
mode, the band-limited white noise with frequency of 0 — 150 Hz and variance of 0.09 is used to
excite the disturbance piezoceramics. Meanwhile, the band-limited white noise with frequency
of 0 — 150 Hz and variance of 0.01 is added to the controller output. The control signal is shown
in Figure 3-33 and the performance signal is shown in Figure 3-34. Comparing with Figure
3-27, the control signal of the “ID and control” case is significantly larger at the beginning
because of the additive signal u,; and the evolution of the controller output is “buried” under it.

Figure 3-35 compares the power spectra of the performance signal of the two different
modes. It is surprising that the “ID and control” mode results in lower power around the natural
frequency of the beam. This is hard to see in Figure 3-34 because the “ID, then control” mode
seems much better. However, it is not surprising that the “ID and control” mode results in higher
power at other frequencies than the natural frequency because of the additive signal u. In
addition,

Table 3-5 shows that the “ID, then control” mode gives better suppression performance
of the overall power.

Unfortunately, for this setup, it is not feasible to test the adaptability of the two modes.
However, this will be done in the wind tunnel experiments.

As a summary, the computational tests are conducted first to determine how the
parameters affect the computational complexity of the system ID and control algorithms. It is
shown that the averaging window number p has much more significant impact on the
computational intensity than the other two parameters for the system ID algorithm. The
dependence of the computational complexity vs. n is approximately twice of that for x.

Similarly it is found that the turnaround time of the control algorithm is approximately linearly
proportional to n_ and p_, while the slope for n_ is approximately twice of that for p_.

The ARMARKOV/Toeplitz system ID algorithm successfully identifies the system
(control model) and results in very good frequency response approximations. A significant
improvement of the performance of the ARMARKOV system ID over the ARMA (when p=1)
system ID is found. However, too many Markov parameters of the ARMARKOV system ID
may be detrimental to the performance. Higher SNR improves the performance, thus when the
system ID is conducted with unknown noise, the input signal should be chosen as large as
possible within the maximum allowable level.

The order of the controller n_ and the number of Markov parameters p_ do not play

significant roles on the performance of the ARMARKOV controller for this vibration control
test. However, this conclusion may vary with different systems and remains to be investigated.
The step size constant Y significantly affects the convergence rate of the controller. T should
be chosen as large as possible before it makes the controller unstable. The spillover effect is
identified in this vibration control test. This effect is unavoidable because the “reference signal”
and “performance signal” are collocated (Hong and Bernstein 1998).

Table 3-1. Parameters for the simulations.

Fs (Hz) 500

Perturbation amplitude a =0.001, 0.002, 0.005
Adaptation gain k=1/a’

Perturbation frequency (Hz) w =30, 40, 50
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High pass filter cutoff frequency (Hz) w, =10

Low pass filter cutoff frequency (Hz) w,=10

Table 3-2. Suppression performance of the disturbance rejection algorithm with p_ =20, Y =0.1

and varying n_.

p.=20,1=0.1 n =1 n = n =10

Suppression (dB) 8.9 8.6 9.0

Table 3-3. Suppression performance of the disturbance rejection algorithm with n. =2, T =0.1

and varying /_.

n=2,1=0.1 p.=1 p.=20 p. =40

Suppression (dB) 8.4 8.7 7.9

Table 3-4. Suppression performance of the disturbance rejection algorithm with n =2, p_ =20
and varying Y.

n,=2,u =20 T=08 Y=0.1 T=1

Suppression (dB) 3.9 8.9 11.7

Table 3-5. Suppression performance of the disturbance rejection algorithm at different modes
with n =2, p.=20 and Y =0.1.

n,=2,p.=20 and Y=0.1 ID, then control ID and control

Suppression (dB) 7.1525 4.9994
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Figure 3-2. Two-dimensional example of the downhill simplex algorithm.
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Figure 3-29. Comparison of power spectra of the performance signals of the ARMARKOV
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Figure 3-30. Comparison of power spectra of the performance signals of the ARMARKOV
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Figure 3-31. Comparison of convergence of the ARMARKOV disturbance rejection with n_=2,
p.=20 and different Y.
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Figure 3-32. Comparison of power spectra of the performance signals of the ARMARKOV
disturbance rejection with n_=2, p =20 and different Y .
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Figure 3-34. Comparison of convergence of the ARMARKOV disturbance rejection at different
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Figure 3-35. Comparison of power spectra of the performance signals of the ARMARKOV
disturbance rejection at different modes with n =2, pu =20 and Y =0.1.
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4 Experimental Setup and Data Analysis Method

The separation control experiments are conducted in an open-return low-speed wind
tunnel with a 30.48 cm (1 ft) by 30.48 cm test section. The wind tunnel has two anti-turbulence
screens, an aluminum honeycomb and a 9:1 contraction ratio. The airspeed is controlled by the
variable frequency of the motor fan.

A two-dimensional NACA 0025 airfoil that is equipped with synthetic jet actuators,
Kulite dynamic pressure transducers and a lift/drag balance is used as the test model. A Particle
Image Velocimetry (PIV) system is used for flow visualization and quantitative flow field
measurements. A Dantec CTA hot wire system is used to measure instantaneous velocity.

This chapter describes each part of the experimental setup in detail. A brief description
of the Higher Order Statistical Analysis (HOSA) is also presented in this chapter because it may
be used for nonlinear flow instability analysis.

4.1 NACA 0025 Airfoil Model

A two-dimensional NACA 0025 airfoil with chord length of 15.24 cm (6 in.) is built as a
test bed for flow separation control (Figure 4-1). The span of the airfoil model is 29.21 cm (11.5
in.), which allows for a slight gap on either end to accommodate a sidewall-mounted strain-
gauge sting balance. The boundary layer is tripped at the leading edge region using No. 60 sand
grit. Two pairs of synthetic jets are embedded in the airfoil at approximately 3% chord and 30%
chord, respectively. Six ports near the rear of the airfoil at the mid-span location are available
for dynamic pressure transducers. The six ports are located at approximately 44.0%, 52.5%,
61.0%, 69.5%, 77.9% and 86.4% chord. A pre-amplifier PCB board for the dynamic pressure
transducers can be also installed in the airfoil. The detailed side view of the airfoil is shown in
Figure 4-1.

4.2 Synthetic Jet Actuators

The airfoil is fitted with two pairs of synthetic jet arrays (each with 0.5 mm wide slots
separated by 2.4 mm), which are located in the central 1/3 spanwise region of the airfoil (see
Figure 4-1). The first pair is located near the leading edge of the airfoil, at approximately 3%
chord, while the second is placed near the point of maximum thickness at about 30% chord. The
first array is fixed, while the second array can be translated between 25% chord and 37% chord.
The detailed design procedures of the synthetic jet actuators that are used in this research can be
found in Gallas et al. (2003) and Gallas (2005). The primary goal of the design is to maximize

the magnitude of the volume flow rate through the orifice per applied voltage (i.e. |Q,, /V..
where Q_, is the volume flow rate and V,_ is the applied ac voltage) over a frequency range of

O(kHz), while the size of the synthetic jet actuators are limited by the geometry of the airfoil.

0

out

As mentioned, the frequency response of the synthetic jet actuators is another important design
criterion. The frequency response of the actuators must be chosen appropriately to effectively
control (via amplitude and burst modulation techniques) the flow separation over a range of
frequencies, ranging from the low frequency shedding in the wake to the high frequency shear
layer instability. The side and top views of the synthetic jet actuators are shown in Figure 4-3.
The cavity is 151 mm long, 28 mm high and 2 mm wide. Five piezoceramic disks are attached
to one side of the cavity. They are driven in phase using a single amplified drive signal to
achieve maximum flow rate. A thin slot (0.5 mm wide by 101.6 mm long) at the top of the
cavity permits oscillatory fluid flow. Two closely spaced synthetic jets are obtained by
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introducing a rigid wall to separate them, as shown in Figure 4-3. The two synthetic jet actuators
are nominally identical. See the detailed characterization of the actuators in 0.
4.3 Experimental Methods

4.3.1 Flow Visualization

Flow field velocity data over the surface of the airfoil and in the wake are acquired using
Particle Image Velocimetry (PIV). The PIV system consists of a pair of New Wave Minilase 15
Hz, 50 mJ per pulse, Nd:YAG lasers with appropriate light sheet optics. The width of the light
sheet is approximately 1-2 mm at the plane of measurement. A TSI model 630157 Powerview
Plus 2MP 10-bit CCD camera is used to acquire images. This camera contains 1600 x 1200, 7.4
pm square pixels. A series of Nikon lenses (60 mm, 75-240 mm, 200 mm) are available. The
flow is seeded with water-based fog fluid by a LeMaitre G150 seeder and the seeding density is
adjusted to insure uniform seeding density.

The laser pulse generator and the camera are synchronized by a TSI Model 610032
Synchronizer which is configured to acquire a pair of images using TSI INSIGHT Software
version 6.1.1. The computation of the velocity field begins by dividing the image into a grid of
interrogation windows overlapped in space by 50%. These windows typically range from 32 x
32 pixels to 64 x 64 pixels. The velocity is determined by the known distance that a particle is
displaced during the known time dT. The INSIGHT Software utilizes an FFT cross-correlation
process in conjunction with a Gaussian peak search algorithm to calculate the average velocity of
the particles in the interrogation widow. A number of validation schemes are available in the
software, such as range outlier rejection and median filtering.

4.3.2 Lift/Drag Balance

A strain-gauge balance is designed to measure lift and drag forces of the airfoil test bed.
The detailed design procedure can be found in Griffin (2003). Two pairs of strain gauges are
attached to the cantilever that supports the airfoil to measure the normal and axial forces on the
airfoil, respectively (Figure 4-4). The layout of the strain gauges and Wheatstone bridge
configuration are shown in Figure 4-5 and Figure 4-6. The output of the Wheatstone can be
calculated by the following equation

_ VAR
out R

From the above equation, we can see that the output is linearly dependant on the change
of resistance AR .

The output of the strain gauges is measured by a high-resolution HP34970A DAQ system
and is averaged over 2 power line cycles to eliminate 60 Hz noise. The lift and drag are
calculated from the normal and axial forces together with the angle of attack (Figure 4-4) via the
following equations:

(81)

L=Ncos(AOA)-Asin(AOA) (82)
D=Nsin(AOA)+Acos(AOA) (83)

where L and D stand for lift and drag, respectively, while N and A stand for normal and axial
force, respectively.

Before the balance can be used for the wind tunnel experiments, it is calibrated by adding
known weights on the balance and measuring the output from the normal and axial strain gauges.
Figure 4-7 and Figure 4-8 show typical normal and axial force calibrations vs. balance output.
Very good linear relationships between the balance output and the forces on the balance are
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achieved. The coefficients of the linear equations are used to back out the forces on the airfoil
from the voltage output of the strain gauges.

The balance is also validated by comparing with the lift and pressure drag coefficients
measured by integrating the static pressure around the airfoil. The pressure taps are located at
the center span of the airfoil and the static pressure is measured via a Heise static pressure gauge.
Figure 4-9 shows the static pressure distributions on the airfoil surface at different AOAs when

Re =150,000. From Figure 4-9, it can been identified that the flow is separated at AOA=15"

and 20°. The suction zones on the upper surface shrink dramatically. This is generally referred
to as pressure loss due to flow separation and is primarily responsible for deteriorating lift to
drag ratio.

The lift and drag coefficients are calculated by integrating the static pressure around the
airfoil surface, assuming surface friction is negligible compared with pressure forces and the
flow is two-dimensional. Figure 4-10 and Figure 4-11 show the comparison of the lift and drag
coefficients calculated by the two different methods at Re =100,000 and Re =150,000. The

. : g : 20 ;
uncertainty was calculated at %95 confidence interval (i.e. uncenamty=ﬁ, where o is

standard deviation and N is number of measurements). As shown, they agree reasonably well
considering measurement uncertainties. This validates that the balance works as desired. The
main reason for the differences is the three-dimensional effect as the pressure taps only measure
at the center span.

4.3.3 Dynamic Pressure Transducers

To measure the pressure fluctuation on the airfoil surface, it is required that the pressure
sensors must be compact so that they can be installed within the limited space in the airfoil. It is
also desired that they have large enough bandwidth to capture the characteristics of the
oscillations of the flow above the airfoil, and their response is linear with respect to the pressure
load within the range of interest. For these reasons, a number of commercially available MEMS
Kulite LQ125-5A dynamic pressure transducers (Figure 4-12) are used to obtain dynamic
pressure response on the upper surface of the airfoil. The transducers can be flush mounted in
the six available locations on the upper surface. A pre-amplifier/filter board for the transducers
is designed to eliminate dc response (f,, ;=1.5Hz) and amplify the outputs by a gain of 100.

The pre-amplifier/filter board can be installed inside the airfoil so that the airfoil acts like an
electronic enclosure. Before the transducers can be used in the experiments, they are
dynamically calibrated in a 2.54 cm (1 in.) by 2.54 cm plane wave tube (PWT). A speaker was
used as a source, and a Briiel & Kjer (Model 4318) microphone was used as a reference
transducer. Figure 4-14 shows the linear response of a typical Kulite sensor that is obtained by
fixing the frequency and increasing the input amplitude of the speaker. The frequency response
is measured using a periodic chirp signal (Figure 4-14). As shown, the frequency response does
not vary up to approximately 3000 Hz, which is sufficient for this research.

4.3.4 Hot Wire Anemometry

A Dantec constant-temperature hot wire anemometry system (CTA module 90C10) is
used to measure time-resolved velocity in the unseparated flow above the airfoil. The CTA
system includes A/D converter and all the signal conditioners needed. Before the measurements,
a static calibration is performed by the calibration module and the flow unit (90HO1 and 90H02).
A typical calibration curve is shown in Figure 4-15. Since the output of the hot wire system
usually drifts due to temperature changes, connections, etc, the calibration should be done before
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each measurement. Two algorithms are commonly used for curve fitting. One is a polynomial
I/n
that is used here, and the other is King’s law (power law): U=((E2-A)/B) , where E is the

voltage output of the hot wire and U is the flow velocity (Jgrgensen 1996). The difference
between the temperatures at calibration and measurements should also be corrected by means of

T -T, ; = . . )
B .=Ea w0 , where T, is the wire temperature, T, is the temperature at calibration,
corr 1 T -TI w 0

E, is the raw wire voltage, T, is the temperature during measurement and E_ is the corrected

voltage (Jgrgensen 1996). During experiments, the hot wire probe (55P11) is mounted on a 2-
dimensional Velmex traversing system which has spatial resolution of about 1.6um/step in both
directions.

4.4 Control System Hardware and Software

The control systems for the separation control experiments are implemented by a
dSPACE (Model DS1005) DSP system with a 466MHz PowerPC CPU. The dSPACE system
has a 5-channel 16-bit A/D board (DS2001) and a 6-channel 16-bit D/A board (DS2102) as the
data acquisition equipments. The range of the data acquisition boards can only be -10 to +10 V,
0 to 10 V or -5 to +5V. The control algorithms are first programmed in Matlab/Simulink and C
programs (c-mex sfunction) and then compiled and downloaded to the dSPACE system. The
compiled programs together with the data acquisition boards are able to run the experiments in
real time. The computer is also able to acquire data into Matlab’s workspace through the
dSPACE system via the m-lib programs provided by the dSPACE.

4.5 Higher Order Statistical Analysis (HOSA)

Higher order spectral analysis is used to uncover the nonlinear interactions in signals or
to identify nonlinear systems (Nikias and Mendel 1993). As discussed in Error! Reference
source not found., there are three characteristic frequencies and nonlinear interactions between
them are inherent in separated flow. Unfortunately, the power spectrum alone is incapable of
providing any conclusive proof of the nonlinear interactions. The power spectrum only provides
proof of presence of power at certain frequencies. On the other hand, higher-order spectral
method can quantify quadratic coupling between frequency pairs. For example, it can provide
the information that the generation of power at a certain frequency is the result of quadratic
coupling of other frequencies. The auto-bispectrum uses third order cuamulants and is defined as

.1 .
..o (f,)=lim —E[ X (£) X (f;) X (£, 4+, (84)
and the auto-bicoherence is defined as

By (£.£,)]
b2 f’f L | XXX | 85
xxx(l J) P_(f)P (fj)Pxx(fi+fj) o

XX XX

where X (f) denotes the Fourier transform of x(t), * denotes the complex conjugate and

P_ (f) denotes the auto-spectrum of x (t).

XX

The auto-bicoherence is bounded by zero and unity. Disturbances with frequencies f;, f;
and f +f; are quadratically coupled if b’ (fi ,fj)zl , not quadratically coupled if b’ (fl,fj)=0 and
partially coupled if 0<b(f,.f,)<l1.
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Just as the auto-spectrum has the cross-spectrum as its counterpart for signals x(t) and
y(t), the auto-bispectrum has the cross-bispectrum as its counterpart, which is defined as:

Bxxy(fi,fj):liml[x(fi)X(fj)Y'(fi+fj)] (86)

T —o0 T

Similarly, the cross-coherence is obtained by normalizing the cross-bispectrum and
defined as follows:

By (£.5,)]
b, (f.f;)= T 87
w (16} P, (f)P, (f;)P, (f+f;) ok
o Dynamic pressure transducers
Synthetic jet R

Actuators  #3 oAb #4 A~ TR

Figure 4-1. NACA 0025 airfoil model with actuators and pressure transducers installed.
(Adapted from Holman et al. 2003)
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